3 research outputs found

    The Hilbertian Tensor Norm and Entangled Two-Prover Games

    Full text link
    We study tensor norms over Banach spaces and their relations to quantum information theory, in particular their connection with two-prover games. We consider a version of the Hilbertian tensor norm γ2\gamma_2 and its dual γ2\gamma_2^* that allow us to consider games with arbitrary output alphabet sizes. We establish direct-product theorems and prove a generalized Grothendieck inequality for these tensor norms. Furthermore, we investigate the connection between the Hilbertian tensor norm and the set of quantum probability distributions, and show two applications to quantum information theory: firstly, we give an alternative proof of the perfect parallel repetition theorem for entangled XOR games; and secondly, we prove a new upper bound on the ratio between the entangled and the classical value of two-prover games.Comment: 33 pages, some of the results have been obtained independently in arXiv:1007.3043v2, v2: an error in Theorem 4 has been corrected; Section 6 rewritten, v3: completely rewritten in order to improve readability; title changed; references added; published versio

    Almost uniform sampling via quantum walks

    Get PDF
    Many classical randomized algorithms (e.g., approximation algorithms for #P-complete problems) utilize the following random walk algorithm for {\em almost uniform sampling} from a state space SS of cardinality NN: run a symmetric ergodic Markov chain PP on SS for long enough to obtain a random state from within ϵ\epsilon total variation distance of the uniform distribution over SS. The running time of this algorithm, the so-called {\em mixing time} of PP, is O(δ1(logN+logϵ1))O(\delta^{-1} (\log N + \log \epsilon^{-1})), where δ\delta is the spectral gap of PP. We present a natural quantum version of this algorithm based on repeated measurements of the {\em quantum walk} Ut=eiPtU_t = e^{-iPt}. We show that it samples almost uniformly from SS with logarithmic dependence on ϵ1\epsilon^{-1} just as the classical walk PP does; previously, no such quantum walk algorithm was known. We then outline a framework for analyzing its running time and formulate two plausible conjectures which together would imply that it runs in time O(δ1/2logNlogϵ1)O(\delta^{-1/2} \log N \log \epsilon^{-1}) when PP is the standard transition matrix of a constant-degree graph. We prove each conjecture for a subclass of Cayley graphs.Comment: 13 pages; v2 added NSF grant info; v3 incorporated feedbac
    corecore